
Problem Solving with Randomization

Zac Friggstad

NAPC - 2023



We’ll discuss some key ideas (with examples) in e↵ectively utilizing
randomization to solve problems.

This is a bit of a whirlwind tour, the topic could have its own
seminar series.

Comment: For some problems I list, a randomized approach is all
I know. For some, there are also deterministic approaches but I
found the randomized approach to be simpler for me.

To generate random numbers, use mt19937. This distributes much
more “randomly” than rand() and is quite a bit faster.

Read https://codeforces.com/blog/entry/61587 for more
discussion. I just want to get to problem solving in these slides ,.



Topic: Random Sampling

NWERC 2014 - Finding Lines
https://open.kattis.com/problems/findinglines

Sample 2 random points p,q. The probability they are distinct
points on a line with 20% of the points is (nearly) at least 1

5 ⋅ 15 .
In O(n) time, can check that the line pq has ≥ 20% of the points.

Repeating 200 times fails to detect the line with probability about(1 − 1�25)200 ≈ 0.03%.



NWERC 2022 - Dragonballs
https://open.kattis.com/problems/dragonballs

Summary: An interactive problem. There are up to 8 “broadcast
towers” at integer points in a 1000 × 1000 grid.

E

/

-.

X
A

4



Consider the Voronoi cells. At least one has ∼≥ 1�7 of the grid
points (a negligible amount lie on the cell lines). So the probability
two random points p,q lie in the same cell is at least roughly 1�49.

Query with p and q: if they are in the same cell then one of the
intersections of the two circles will be a tower.

Each iteration involves ≤ 4 queries (p,q and the circle intersection
points). So the expected number of iterations until all towers are
identified is at most:

4 ⋅ (49 + 36 + 25 + 16 + 9 + 4 + 1) = 560.

/

X

4
...



Even better. There are only O(7 ⋅ 1000) points that are within
distance 1 of a voronoi boundary.

So a random p = (x , y) is in the interior of a cell with probability
106−O(7000)

106 ≥ 98.
So do as before, but with points p and q = (x + 1, y). Expected
number of queries in total is at most

4 ⋅ 1

0.98
⋅ 7 ≤ 30.

-
%O



Example of heuristic reasoning. Quicksort

� A random pivot is likely to cut the list into parts of size ≤ 3�4.

� So even though not all iterations do this, it still happens often
enough that the algorithm probably has logarithmic recursion
depth, thus O(n log n) running time.

Caveat: The actual analysis you will probably find by searching for
“randomized quicksort analysis” is likely di↵erent. But reasoning
like this works in practice for competitive programming.

good pivots



Other problems that can be solved with random sampling.

Codeforces 364 - Ghd
https://codeforces.com/problemset/problem/364/D

NERC 2022-23 - Amazing Trick
https://codeforces.com/contest/1773/problem/A

BOI 2018 - Worm Worries
https://open.kattis.com/problems/worm

Caveat: Some of the groups can (must?) be solved with a
randomized algorithm but other groups need a di↵erent approach.



Topic: Random Constructions

With some constructive problems, things might seem so
“forgiving” that a random construction could work.

NAC 2022 - Word Ladder
https://open.kattis.com/problems/wordladder3

Randomized Construction

� Start with any length-10 string.

� Pick a random index and change it to a random character in
the most recent string to generate the next string. Reject if it
is a string in the sequence or is “adjacent” to a string too
early in the sequence.

� Repeat until the sequence is long enough.

Intuition: It just seems super-unlikely that you will get “stuck”.
Determinstic Variant: Fix a seed. Make sure it works on your
machine for N = 5000.



For random construction problems you should consider things like:

� Is there enough “slack” in the constraints of the problem that
each step will probably succeed? Otherwise a random
approach may not work (or needs to be refined).

� Checking if your recent sample is “ok” before proceeding with
the next one.

� You may have to “backtrack” a few steps if you seem stuck.

Other constructions I have solved with randomization.

Codeforces 1722 - Even-Odd XOR
https://codeforces.com/contest/1722/problem/G

Codeforces 907 - Seating of Students
https://codeforces.com/contest/907/problem/D

UAPC 2023 - Sneaky Exploration
https://open.kattis.com/problems/sneakyexploration



Topic: Colour Coding

KTH Challenge 2013 - vacuum
https://open.kattis.com/problems/vacuum

The problem at the link does not need a randomized algorithm.

But consider this variant: n ≤ 200000 and the sizes can be huge.



An observation
If there was only one bin, it can be solved in O(n log n) time. Sort
items by size:

� For each item, binary search to find the largest other item
that it could fit with.

� or can even do in O(n) time after sorting using a
simultaneous forward/backward linear scan.

What about 2 bins?

1, 5, 6, 6, 8, 9, 12, 14, 18
Cap = 21-

8



Randomly partition the items into two groups X1,X2. Run the
O(n log n) algorithm for X1 with capacity b1 and also for X2 with
capacity b2.

With probability at least 1�24, this works since each of the items in
the optimum solution will be added to the right part X1 or X2 with
probability 1�2.
Can improve the probability a bit by also trying X2 with b1 and X1

with b2: the probability of success is at least 1�8 now.

Separate
1-bin
Problems⑭



I’m borrowing the term colour coding from the field Parameterized
Algorithms, which has many examples of colour coding.
Some more academic examples are here:
https:

//tcs.rwth-aachen.de/lehre/FPT/WS2014/slides.pdf

Basic Idea

If the actual number of objects the optimum cares about is small,
then perhaps a random grouping/colouring of the objects into
fewer groups will help.

This may reduces the complexity of a combinatorial search for the
right items.



2019 ICPC Mid-Central Regional - Dragonball II
https://open.kattis.com/problems/dragonball2

Notice: 14 seconds

Observation: If there are only 7 distinct IDs, say {1,2,3,4,5,6,7}
to begin with, we can solve this with Dijkstra’s algorithm on the
graph with vertices V × 2{1,2,...,7}: i.e. where are we at and which
IDs have we already collected?

6
↳



Colour Coding

For up to 1000 di↵erent IDs, randomly map each distinct ID to{1,2, . . . ,7}. The probability the 7 distinct IDs collected by the
optimum solution map to 7 distinct colours is 7!

77 ≈ 0.006.

Unfortunately, this isn’t good enough because the probability is too
small. Would need too many repeated trials to make this work, eg.
even 100 trials wouldn’t bring the success probability up to 50%.

1 2 3

4
5 6

7⑲-800



Boosting the Probability with More Colours

Instead of 7 colours, use more.

Randomly map each ID to a value in {1,2, . . . ,15}. The graph size
increases to ≈ 3.2 million nodes and ≈ 32 million edges, but that’s
still doable multiple times within 14 seconds.

Find the cheapest path to a state (v ,S) ∈ V × 2{1,2,...,15} with�S � ≥ 7.
The probability the 7 balls collected by the optimum solution are
mapped to di↵erent colours is much better: 15!(15−7)! ⋅ 1

157 ≈ 0.189.
Repeating 30 times yields a 99.8% chance of success.



Topic: Designing a good hash function

RMC 2020 - Typo
https://open.kattis.com/problems/typo

One idea is to use a hashing scheme mapping strings to integers
such that for any string t and any index i , we can quickly compute
the hash of string resulting from deleting the i ’th character from t.

If so, then do this for the 106 characters across all strings and see
if any of the resulting hashes equals the hash of an input string.
Linear time!

But how to do the hashing?



View the string s as a polynomial hs(x).
Coe�cients == ascii values of the characters.

Example: s = apples
hs(x) = a ⋅ x0 + p ⋅ x1 + p ⋅ x2 + l ⋅ x3 + e ⋅ x4 + s ⋅ x5

Two polynomials are distinct if and only if their corresponding
strings are distinct.



Pick a large prime P and sample a single random integer z ≠ 0
(mod P).

The hash of string s is then the value hs(z) (mod p).
E↵ectiveness

� For two distinct strings s, t of length at most d , their
polynomials have degree at most d . If P > ‘Z’, the
polynomials will remain distinct (mod P).

� Then hs(x) − ht(x) (mod P) will still be a nonzero
polynomial. Thus, will have at most d roots.

� Therefore: the probability s and t hash to the same value
(i.e. hs(z) ≡ ht(z) (mod P)) is at most d

P−1 .

We can pick the prime P to be close to 263 if we work with 128-bit
integers, i.e. uint128 t or int128 t



Flexibility

We can compute all hashes for all prefixes of s in O(�s �) time.

Then, to compute the hash after deleting a single character i just
do a bit of algebra using these hashes and modular inverses.

Example: Deleting the letter l from apples. The hash is just:

happes(z) = a ⋅ z0 + p ⋅ z1 + p ⋅ z2 + z−1 ⋅ (e ⋅ z4 + s ⋅ z5)

= z−1 ⋅ (happles(z) − happ(z)) + happ.
If we precomputed z

−1 (mod P) and precomputed the hashes of all
prefixes of strings, computing the hash of appes takes O(1) time.

Can quickly hash other string manipulations this way (eg. deleting
an entire substring, concatenating two strings).



But will this be good enough to avoid all false positives (i.e. hash
collisions)?

Quick reasoning to convince yourself it is good

With typos, we have up to 106 input strings and 106 strings we try
deleting a character from.

Each string has length ≤ 106 so the probability of a false positive
between an input string and a single string we get by deleting a
character is at most 106

P
.

Therefore, the probability that some comparison is bad is at most

(# pairs of strings we are worried about colliding) ×106

P
≤ 1018

P
.

This analysis is very coarse since we cannot simultaneously have
106 strings in the input and have a large number of them with
length 106. So it will be much better!



Another way to boost the probability of correctness is to consider
sampling a few di↵erent z and running the hash checks for each z .

With some problems, you can even remove doubt by explicitly
doing string comparison when a collision. For example, with Typo
false positives are so rare and you can stop if you do find a typo so
you can a↵ord to check if the strings are == if their hashes collide.

There are many other problems that can be solved using string
hashing. Even KMP itself can be replaced by string hashing. It is
really powerful!

mig



Topic: Breaking patterns in data

Buckeye Programming Competition 2022 - Spooky Scary Skeletons
https://buckeyecode.club/problem/view/

bpc22spookyscaryskeletons

2,4213spooky
-

notspooky



We can compute the bitwise XOR of any subarray by maintaining
prefix XOR sums.

1. If all integers appeared an even number of times in the
subarray, its XOR would be 0.

2. If there was exactly one integer appearing an odd number of
times, the subarray XOR would be that integer.

3. But it is not so clear what we get if there are multiple integers
appearing an odd number of times.

1 2 1 4 5 3 1 5 2 3 1 4  XORS to 0

5 1 5 6 5 1 6 5 6 1 1   XORS to 6

1 2 3 XORS to 0 a r

-



Simple idea: Map each integer b in the input to a random
random 64-bit value h(b).
For any query as in Case 3, the XOR is now very unlikely one of
the h(b) values: at most n

264 .

Over all q queries, the probability at least one of them fails is then
at most Q ⋅N

264 . Small enough for this range of Q and N.



Topic: Random Walks

300iq Singapore Contest (2019) - Zero Sum
https://qoj.ac/contest/947/problem/4238

n = 35,000  rows

-3 -2 -1 0  1  2  3
6
8

A
I

-

&I

R

D

-

I

*

*

d



Standard dynamic programming: let f (i , c) be the best way to
select from the first i rows such that the column index sum is c .

f (i , c) = min−k≤j≤k A[i][j] + f (i − 1, c − j).
Best we can say for c is �c � ≤ n ⋅ k�2. So this takes O((n ⋅ k)2)
time. Too slow!



Concept: If you add n random ±1 values, �sum of values� is
probably about O(√n). That is, the standard deviation is

√
n.

Generalizing, if the values are random between −k and k , the
standard deviation is k ⋅√n.
Idea: Randomly shu✏e the rows. We can think1 of the column
indices in the optimal solution as being random from −k to k .

So now c only needs to index between, say, ±10 ⋅√n ⋅ k and the
DP algorithm now runs in O(n1.5 ⋅ k2) time: fast enough!

1This isn’t completely precise since the column indices are dependent, but
one can make this “heuristic” argument more formal.

-
S

S
-in an >



KTH Challenge 2014 - Pizza Problems
https://open.kattis.com/problems/pizzaproblems

momeries
good pinza



Let’s say the pizza we forgot about is the awesome pizza.

Notice for any pizza that satisfies ≤ 1�3 of someone’s preferences,
at least half of their unsatisfied preferences were satisfied by the
awesome pizza.

So if we pick one of the unsatisfied preferences randomly and
toggle that topping, our current pizza gets one step closer to the
awesome pizza.

Iterate this until everyone is > 1�3 satisfied by your proposed pizza.

Preferences

Awesome Pizza
Current Pizza

12I I

Wemmt E
⑲A -



Why does this work? A random walk on a path 0,1, . . . ,n will take
at most n2 steps in expectation to reach node n.

In our setting, the nodes on the “path” indicate how many
toppings are in agreement between our pizza and the awesome

pizza.

Each iteration, we have at least a 1�2 chance of agreeing more
with the awesome pizza i.e. taking a random step to the right in
this graph.

With only 250 toppings, the expected number of topping changes
is at most 2502. Fast!

0 — 1 — 2 — 3 — 4 — 5 — 6 — 7 — 8

- unsters



Randomized Algorithms Courses

Everything I talked about should be covered in a standard course
on randomized algorithms. While most o↵erings get more
theoretical than what we need in CP, they do provide a good
foundation for thinking this way.

Consider perusing the notes of a randomized algorithms course or a
textbook in this topic.

(tiny font so they fit... just click on them)
https://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/

https://ocw.mit.edu/courses/6-856j-randomized-algorithms-fall-2002/pages/lecture-notes/

https://www.amazon.com/Randomized-Algorithms-Rajeev-Motwani/dp/0521474655

https://www.amazon.com/Probability-Computing-Randomized-Algorithms-Probabilistic/dp/0521835402/



Short list of other useful facts + keywords to search
� Markov Chain of an Undirected Graph: The expected

number of steps for a random walk (starting anywhere) to
reach all nodes is at most 2 ⋅ �V � ⋅ �E �.

� Schwartz-Zippel Lemma: If you plug random values into the
variables of a nonzero, degree-d multi-variate polynomial, the
probability it vanishes is at most d�S � where S is the set you
sampled values from.

� Tutte Matrix: For a graph G (not necessarily bipartite), pick
random values ze (mod P) for the edges. Construct the
adjacency matrix except use Au,v = ze and Av ,u = −ze for each
edge e = (u, v) (the order of u and v doesn’t matter).

Then det(A) (mod P) will always be 0 if G has no perfect
matching, and will be nonzero with probability at least
1 − �V ��P if G has a perfect matching.


