Meissel-Lehmer算法
Contents
介绍
给定一个正整数 $n$,Meissel-Lehmer算法用于求 $\leq n$ 的质数数量。
时间复杂度:$O(\frac{n^{\frac{2}{3}}}{\log^2{n}})$
空间复杂度:$O(n^{\frac{1}{3}}\log^3{n})$
模版
int isqrt(ll n) {return sqrtl(n);}
// 时间复杂度 O(n^{2/3}),空间复杂度 O(n^{1/3} * log^3(n))
// 调用 prime_pi(n) 返回 <= n 的质数数量(不包含1)
ll prime_pi(const ll N) {
if (N <= 1) return 0;
if (N == 2) return 1;
const int v = isqrt(N);
int s = (v + 1) / 2;
vector<int> smalls(s); for (int i = 1; i < s; ++i) smalls[i] = i;
vector<int> roughs(s); for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;
vector<ll> larges(s); for (int i = 0; i < s; ++i) larges[i] = (N / (2 * i + 1) - 1) / 2;
vector<bool> skip(v + 1);
const auto divide = [] (ll n, ll d) -> int { return double(n) / d; };
const auto half = [] (int n) -> int { return (n - 1) >> 1; };
int pc = 0;
for (int p = 3; p <= v; p += 2) if (!skip[p]) {
int q = p * p;
if ((ll)(q) * q > N) break;
skip[p] = true;
for (int i = q; i <= v; i += 2 * p) skip[i] = true;
int ns = 0;
for (int k = 0; k < s; ++k) {
int i = roughs[k];
if (skip[i]) continue;
ll d = (ll)(i) * p;
larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc;
roughs[ns++] = i;
}
s = ns;
for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) {
int c = smalls[j >> 1] - pc;
for (int e = (j * p) >> 1; i >= e; --i) smalls[i] -= c;
}
++pc;
}
larges[0] += (ll)(s + 2 * (pc - 1)) * (s - 1) / 2;
for (int k = 1; k < s; ++k) larges[0] -= larges[k];
for (int l = 1; l < s; ++l) {
int q = roughs[l];
ll M = N / q;
int e = smalls[half(M / q)] - pc;
if (e < l + 1) break;
ll t = 0;
for (int k = l + 1; k <= e; ++k) t += smalls[half(divide(M, roughs[k]))];
larges[0] += t - (ll)(e - l) * (pc + l - 1);
}
return larges[0] + 1;
}
例1 CF665F Four Divisors
题意
给定一个正整数 $n$,求有多少个正整数 $a$ 满足以下条件:
- $1 \leq a \leq n$。
- $a$ 拥有恰好4个disivor。
其中,$1 \leq n \leq 10^{11}$。
题解
$a$ 拥有恰好 $4$ 个divisor意味着 $a$ 只有可能为两种情况:
- $a = p^3$
- $a = p_1 * p_2$
其中,$p, p_1, p_2$ 均为质数。
对于第一种情况暴力枚举即可。
对于第二种情况,我们保证 $p_1 < p_2$,那么 $p_1 < 10^6$,所以只要枚举 $10^6$ 以内的所有 $p_1$,然后判断有多少个 $p_2$ 满足 $p_1 * p_2 \leq n$ 即可,可以直接求在 $[p_1+1, \frac{n}{p_1}]$ 之间的质数数量得到答案。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6+5;
int isqrt(ll n) {return sqrtl(n);}
// 时间复杂度 O(n^{2/3}),空间复杂度 O(n^{1/3} * log^3(n))
ll prime_pi(const ll N) {
if (N <= 1) return 0;
if (N == 2) return 1;
const int v = isqrt(N);
int s = (v + 1) / 2;
vector<int> smalls(s); for (int i = 1; i < s; ++i) smalls[i] = i;
vector<int> roughs(s); for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;
vector<ll> larges(s); for (int i = 0; i < s; ++i) larges[i] = (N / (2 * i + 1) - 1) / 2;
vector<bool> skip(v + 1);
const auto divide = [] (ll n, ll d) -> int { return double(n) / d; };
const auto half = [] (int n) -> int { return (n - 1) >> 1; };
int pc = 0;
for (int p = 3; p <= v; p += 2) if (!skip[p]) {
int q = p * p;
if ((ll)(q) * q > N) break;
skip[p] = true;
for (int i = q; i <= v; i += 2 * p) skip[i] = true;
int ns = 0;
for (int k = 0; k < s; ++k) {
int i = roughs[k];
if (skip[i]) continue;
ll d = (ll)(i) * p;
larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc;
roughs[ns++] = i;
}
s = ns;
for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) {
int c = smalls[j >> 1] - pc;
for (int e = (j * p) >> 1; i >= e; --i) smalls[i] -= c;
}
++pc;
}
larges[0] += (ll)(s + 2 * (pc - 1)) * (s - 1) / 2;
for (int k = 1; k < s; ++k) larges[0] -= larges[k];
for (int l = 1; l < s; ++l) {
int q = roughs[l];
ll M = N / q;
int e = smalls[half(M / q)] - pc;
if (e < l + 1) break;
ll t = 0;
for (int k = l + 1; k <= e; ++k) t += smalls[half(divide(M, roughs[k]))];
larges[0] += t - (ll)(e - l) * (pc + l - 1);
}
return larges[0] + 1;
}
ll ans = 0;
bool isPrime[maxn];
vector<int> primes;
void euler() {
memset(isPrime, 1, sizeof(isPrime));
for (ll i = 2; i <= 1e6; i++) {
if (isPrime[i]) {
primes.push_back(i);
}
for (int j = 0; j < primes.size(); j++) {
if (i * (ll)primes[j] > 1e6) break;
isPrime[i * primes[j]] = 0;
if (i % primes[j] == 0) break;
}
}
}
int main() {
euler();
ll n; cin >> n;
for (ll p : primes) {
if (p * p * p <= n) ans++;
else break;
}
for (ll p : primes) {
if (p * p >= n) break;
ans += prime_pi(n/p) - prime_pi(p);
}
cout << ans << endl;
}
参考链接